Savana's Prelim: Sequencing centromeric RNAs (cenRNAs)

Lab Meeting 2/21/25

Objectives

- 1) Introduce centromeric RNAs
- 2) Sequencing Approach
- 3) Preliminary Results
- 4) Discuss my prelim aims → Feedback Welcome :)

Background - Centromeric Transcription

- Centromeric transcription happens across many eukaryotic species - from yeast to humans
 - From different centromere types and regions
- RNA Pol II Transcription
- Non-coding → both small and large
- Regulation across the cell cycle

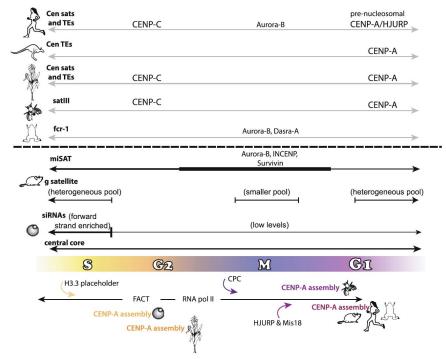


Figure from Duda, Trusiak and O'Neill (2017) Depicting timing, type, and known interactors of cenRNAs in different organisms.

Background - cenRNA regulation

- Human ?
 - Both a modulator of cell cycle progression and regulated by the cell cycle → potentially regulated by the proteasome (NFY-A)
- Yeast Cbf1 transcription factor
 - Transcription begins in pericentromeric regions and stalls at Cbf1 (transcription factor)
 - \circ ~ In S-phase, Cbf1 is lost and transcription extends into the centromere

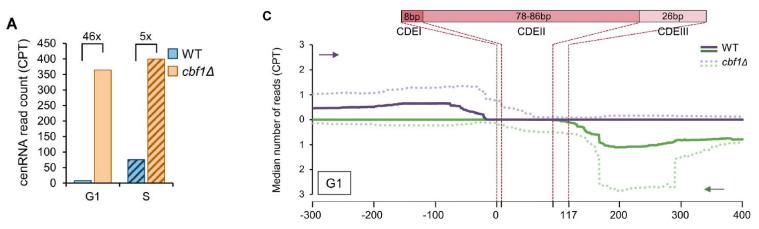


Figure 3 A & C from Hedouin et al. (2022) depicting cenRNA expression changes at G1 and S phase in WT and cbf1 knockout cells.

Background - What do cenRNAs Do?

- Most research indicates roles in *cis*, but some in *trans* (non-human)
- Loss of cenRNAs across species leads to mis-segregation and centromere dysfunction
- Protein targeting studies show potential interactions with CENP-A, CENP-C, and Aurora B
 - CENP-A and CENP-C have RNA binding domains
 - cenRNA depletion interferes with CENP-A loading (human)

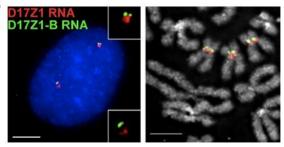



Figure 2B from McNulty *et al.* (2017) showing RNA FISH of cenRNAs on metaphase cells

Background - Are cenRNAs Important?

Basic Biology

- Tight regulation implies yes → functionally necessary, regulatory, or something else?
- Prevalence across species indicates important role in potential centromere determination, function, and maintenance?

Disease Relevance?

- Changes in cenRNA (cenRNA) expression appear to interfere with appropriate chromosome segregation and increase chromosomal instability (CIN)
- Potential Roles in:
 - Cancer
 - Aneuploidies
 - Infertility

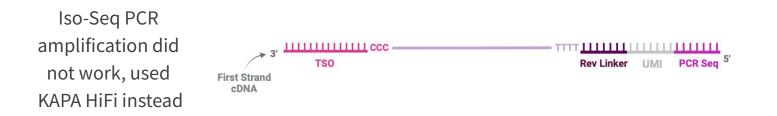
Background - What are we missing?

- Previous studies in human cells largely rely on FISH, qPCR, CHIP, or depletion to study cenRNAs → this limits our ability to study different RNA species and isoforms
- Where exactly are cenRNAs coming from and how are they regulated?

Targeted Long-Read Sequencing will allow us to:

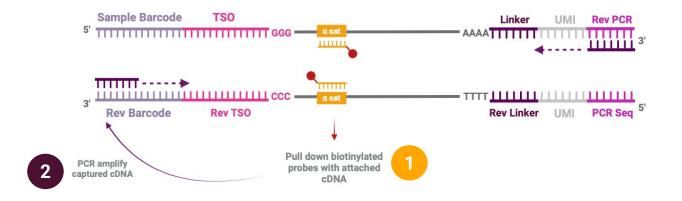
- Map transcripts back to the genome to discover where they are transcribed
- Identify different isoforms
- Understand the diversity of cenRNAs within a single human cell type

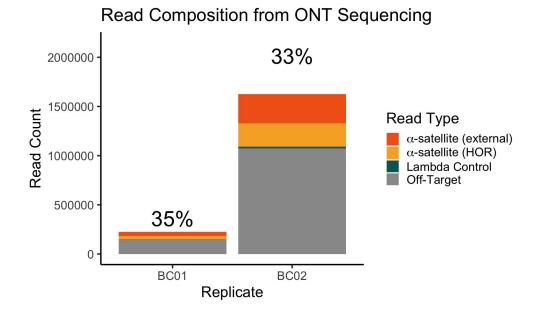
Long-Read Sequencing Approach


- CHM13 has the T2T reference genome, single haplotype (paternal)
- miRNA linker allows for 3' amplification of <u>ALL</u> RNA transcripts (polyA and unpackaged)
- Using 95,459 probes covering 83Mb of alpha satellite DNA throughout the genome (100% coverage)

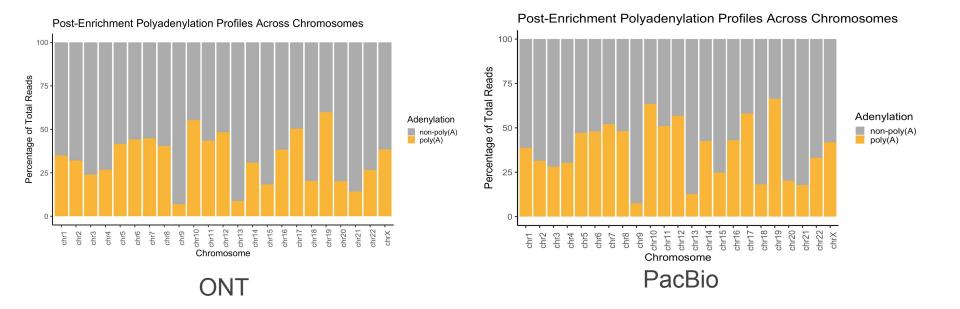
Library Prep - cDNA synthesis

_ __ __


First Strand Synthesis


Hybridization Capture

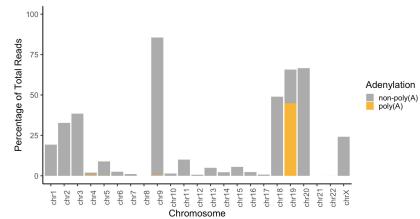
_ __ __



Preliminary Data

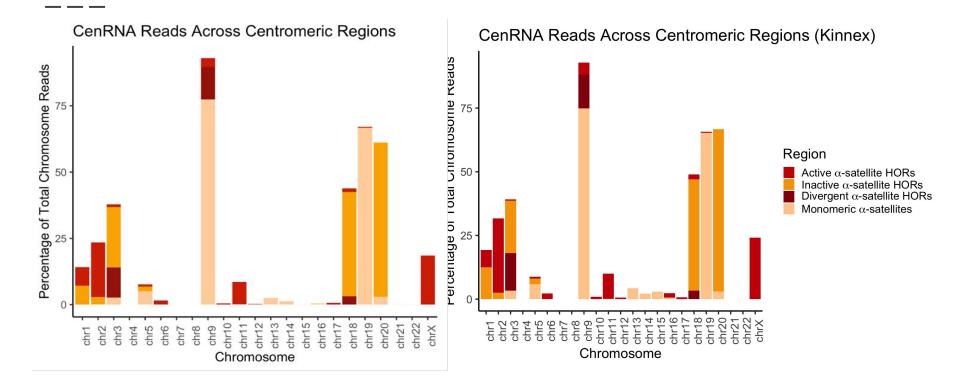
Results - Enrichment

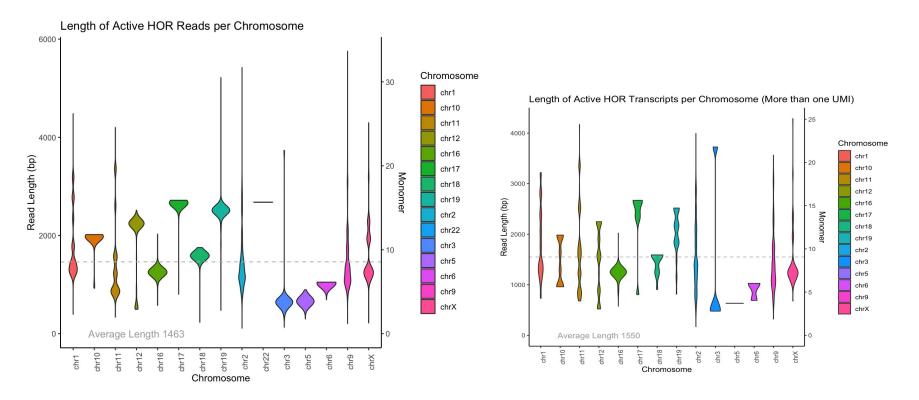
Results - Polyadenylation



Generally, polyA read counts are a little lower in ONT than PacBio (BC01 36% in ONT and 42% in PacBio, BC02 is 27% in ONT and 31% in PacBio)

Target *a*-satellite Read Polyadenylation Profiles Across Chromosomes

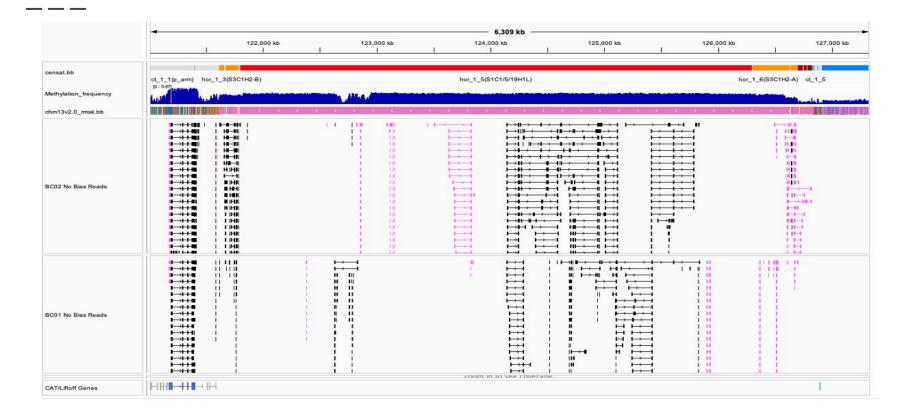

Target α -satellite Read Polyadenylation Profiles Across Chromosomes


PacBio

ONT

Proportion of reads per chromosome in Centromere

Active HOR Read length per chromosome (Kinnex)



Summary

- Centromeric reads we are able to capture are largely not polyadenylated
- Reads come from different array types in each chromosomes and not all chromosomes produce cenRNAs (that we can capture)
- Despite differences in read depth and technology, read distributions look similar in both ONT and PacBio sequencing
- Average length of active HOR transcripts is 1.5 kb, however this varies across and within chromosomes

Example Transcripts

Chromosome 1

Chromosome 9

	chr9:44,592,771-48,418,717		21.2 g21.33 g22.31 g31.1 g31.3			
	p24.1 p23 p22.2 p21.2 p13.3	p12 p11.1 q12 q13 q21.12 q2	1.2 q21.33 q22.31 q31.1 q31.3	q33.1 q33.3 q34.13		
		3,825 kb				
	45,000 kb	46,000 kb I I	47,000 kb	48,000 kb		
ZenSat				. I D		
JenSat	t_9_25 ct_9_27 0-0.97	hor_9_1(S2C9H1L)	dhor_9_5(SF2,SF02)	hor_9_5(SF2,SF02) ct_9_32 ct_9_33		
NA Methylation						
lepeatMasker						
tepeatMasker	N25 L1ME3A HSATII	ALR/Alpha	L1ME5 L3 L2	(AT)n L3 AluSx Alu L2b		
			R + = → + + + = + + → + → → → → → ↓ → + ↓ → + ↓			
8C02 No Bias Transcripts	PB.160.2 PB.167.1 PB.167.171 PB.167.9	23 PB.167.2172 PB.167.2584 PB.168.1 PB.176.7 PB.176.242	PB.176.367 PB.176.478 PB.177.1 PB.178.4			
	PB.161.1 PB.194.3392					
		→→→→ -	411			
3C01 No Bias Transcripts	PB.131.1 PB.132.1 PB.141.1 PB.144.11	1 PB.145.1 PB.148.2 PB.149.1 PB.156.1 PB.165.42 PB.16	6.1 PB.169.1 PB.173.1			
	PR 130 2 PR 142 763 PR 143 1					
		MANAN ANAN ANAN ANAN ANAN ANAN ANAN ANA		H-H		
		<mark>B # 10-11-→B → OF414100-000-→ → → 1</mark> (01) (01 H (H-18)(F0 (010)(0))-4 (00)() (-		⊢→ -I		
			- HH H			
			- + + + + + + + + + + + + + + + + + + +			
3C02 No Bias Reads			- IH I I II			
5002 No bias Reads			A HA I I I			
		₩1₩-\$UPF_0154_01@ 151 [1 1 F1115 0				
		ANING-THE-REF RENT BUD → I II II HE-HE-HE-HE-HE-HE-HE-HE-HE-HE-HE-HE-HE-H				
		IT IN THE REPORT OF THE ADDRESS OF T	HII H			
		11 0 1	1 1 1 1 1 1			
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10			
C01 No Bias Reads		$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	+ 1000	Then it it see therease	· · · · · · · · · · · · · · · · · · ·	I I I I I I II-II-H		

Chromosome 6 (dHOR)

Pericentromeric (monomeric) - Chr 16

	38,036 kb 38,038 kb	38,040 kb 38,04		38,046 kb 38,048 kb I W I	38,050 kb 38,052 l l l l l
CenSat			mon_16_6		
Sat_SF.bigBed	2 R2 R2 R2 R2 R2 R2 R2 R2	R2 Ga Ga Ga		Ga Ga J5 R2	R2 R2 R2 R2 R2 R2 R2 R2
Sat_HOR.bigBed	S5C1H5d.3			S4C22H3.5	S5C1H6d.1
A Methylation	[0 - 0.97]				
peatMasker			6 6 6 6 6 6		
01 No Bias Transcripts		C C			
202 No Bias Transcripts					
01 No Bias Reads					
CO2 No Bias Reads					

Promot ed off of L1PA2 -LINE TE

Prelim Discussion

What are prelims?

Qualifying exams involving:

- 1) Written proposal
 - a) Grant style proposal with 2 aims
 - b) Preference for hypothesis driven work
 - c) Preliminary data is not required
- 2) Oral presentation on
 - a) 5 slides
 - b) 15 minutes without interruptions
 - c) Anything related to slides/in proposal is fair game for further questioning

Aim 1: Variation of cenRNAs across human genomes

Objective:

To gain a comprehensive understanding of how cenRNAs vary across diverse genomes and between haplotypes

Hypothesis:

cenRNA transcription will vary both in sequence and locus of origin across individuals of diverse ancestries with unique centromeric haplotypes and methylation profiles

Significance:

Potential to elucidate a connection between, sequence, epigenetics, and cenRNA expression across individuals

Approach

1.1: Sequence cenRNAs across genomes

- Use Iso-Seq hyb-cap approach on diverse individuals from the HPRC and HGSVC
- Want to start by choosing 10 individuals across the 5 populations (2 of each)
- Samples with mostly(?) Complete centromeres across chromosomes
 - How many individual genomes do we have where every chromosome has both haplotypes assembled correctly?
 - Any recommendations?
- 1.2: Evaluate Structure and Modification
 - Model potential secondary structures
 - Perform native RNA sequencing on cenRNAs to look at modifications on select genomes

Limitations/Concerns

- Worried about effectively being able to map RNAs back to specific haplotypes given size of cenRNAs I've been able to pickup
- Potential that probes miss regions that are in these genomes and not CHM13 since probes were designed to CHM13...
 - Want to map probes to each assembled centromere, then check for large gaps of regions with less than 80% sequence similarity...may need to then add in those probes...
- **Question for you:** Any recommendations on what individuals to choose? Unique haplotypes and structures?

Questions/Suggestions?

Aim 2: Characterize the Function of cenRNAs in CHM13

Objective:

To evaluate the function of specific cenRNA transcripts and deconvolute the role of transcription from the role of cenRNA transcripts themselves

Hypothesis:

Human cenRNAs function in cis through transcriptionally facilitated epigenetic changes to ensure proper chromosome segregation

Significance:

Function of cenRNAs has implications in understanding and identifying disease contexts, as well as centromere determination

Approach

1.1: Perform Functional Knockdown Experiments in CHM13:

- CRISPRi (knockdown) dCas9 prevent transcription
 - Also operates via KRAB domains, which may not be able to effectively prevent transcription since we don't really understand loci
- Cas13a or LNA knockdown of specific transcripts test function of transcript themselves
- Test chromosome specific segregation defects and evaluate changes in epigenetic profiles (CENP-A, methylation)

1.2: cenRNA overexpression in CHM13:

- Introduce an overexpression vector to increased expression in *trans*
- Recruit RNA pol II via dCas 9 targeting (*cis* transcription)
- Evaluate chromosome segregation and cell-cycle defects (timing, cell stress, apoptosis, etc)

Validate expression changes with qPCR, sequencing or smFISH, FIBER-FISH, or Oligopaint?, which can provide more localization information

Limitations/Concerns

• CHM13 for functional characterization

- They're trophoblast like generally not representative of epiblast expression
- Altered expression profile due to lack of imprinting
- We won't have multiple haplotypes, which could be functionally relevant...

• dCas9 targeting

- May run into limitations with sequence or specificity
- Potential difficulty localizing to centromere due to tight packaging
- For overexpression
 - Promoter?
 - Localization of transcripts
- # of replicates (biological and technical)?

Questions/Suggestions?

Other Possible Experiments and Validation

Other Possible Aims

- Primate cenRNA sequencing
 - Part of the reason I'm not including this is because it's kinda a lot, expensive, and harder to write as a hypothesis driven aims
- Characterizing RNA modifications in cenRNAs
 - Where are they modified? → direct RNA ont-sequencing (limited by probe pulldown though)?
 - When?
 - Are certain transcripts modified while others aren't
 - Do modifications change across the cell cycle or in the presence of cell stress?
 - Does lack (or increase) of modifications via dCas9 or knockout on these RNAs cause chromosome mis-segregation?
- Pol II long-read ChIP (DeMeLo Seq or Timp's) → attempt to do across cell cycle?
 - Serves as a potential indicator of active transcription in the centromere

Supplementary Slides

Kinnex Sequencing Summary

Deconcatenated Reads	Barcoded Reads	%	Replicate	Reads	Replicate Proportion	Refine Command	Refined Reads	noA reads	Adenylation Proportion	Reads w/ Linker	% w/ Linker	% Post Barcoding	Total Yield
77259260	75770397	BC01 98.07 BC02	BC01	9681535	12.78	flnc all	9676429	5658761	58.45	5616153	99.25	99.42	
						flnc polyA (min 10)	4017687		41.50	4009320	99.79		97.29
			BC02	66088862 87.22	87.22	flnc all	66038930	45814692	69.32	45372953	99.04	99.17	57.25
						flnc polyA (min 10)	20224467		30.60	20170097	99.73		